Mathematical Computations in Scientific Notation
Dr. Susan Petro

Addition
In order to add two numbers expressed in scientific notation the exponents must be the same.
For example: To add 2.00×10^5 and 1.00×10^4 both numbers must have the same exponent, either 10^5 or 10^4. So convert 2.00×10^5 to 20.0×10^4. Now you can add 20.0×10^4 and 1.00×10^4 to give you 21.0×10^4. Finally convert your answer back to proper scientific notation - 2.10×10^5.

Subtraction
In order to subtract two numbers expressed in scientific notation the exponents must also be the same.
For example: To subtract 1.00×10^4 from 2.00×10^5 both numbers must have the same exponent, either 10^5 or 10^4. So convert 2.00×10^5 to 20.0×10^4. Now you can take 20.0×10^4 and subtract 1.00×10^4 to give you 19.0×10^4. Finally convert your answer back to proper scientific notation - 1.90×10^5.

Multiplication
In order to multiply two numbers expressed in scientific notation one first multiplies the two numbers and then adds the exponents on the two numbers.
For example: To multiply 2.00×10^5 by 1.0×10^3 multiply 2.00×1.0 which gives 2.0 (remember significant figures - answer has only as many significant figures as the number with the fewest significant figures - in this case 2.00 has three significant figures while 1.0 has two significant figures so the answer would have two significant figures). Next add the exponents of 10^5 and 10^3 which gives 10^8. The final answer then is 2.0×10^8.

Division
In order to divide two numbers expressed in scientific notation one first divides the two numbers and then subtracts the exponents on the two numbers.
For example: To divide 2.00×10^5 by 1.0×10^3 divide 2.00 by 1.0 which gives 2.0. Next subtract the exponents of 10^5 and 10^3 which gives 10^2. The final answer then is 2.0×10^2.